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Abstract-The lateral compression of circular tubes to large deformations is examined. The discrepancy
between the theories and experiments reported previously is attributed in the main to an inadequate
modelling of the stationary plastic hinges which are produced in the tube as it deforms. A model which
utilises standard elastica theory is proposed which shows good agreement with the experimental data
produced by the authors and that already published.

INTRODUCTION

The use of structural elements in impact energy absorbing systems has attracted a considerable
amount of attention and several reviews of the literature exist [1-3]. Interest has centred on
those metallic devices and structures which depend upon the absorption of energy by the
production of plastic deformation.

As a step towards assessing the energy absorbing capacity of these devices under impact
conditions their behaviour under quasi-static loading is usually first examined. Viewed generally
as problems of plastic structural mechanics the analysis of such devices is formidable. Large
geometry changes are usually produced and, in cases where tubular components are involved,
the loading is seldom axisymmetric. However certain classes of problems have been examined
both theoretically and experimentally with the aim of identifying the dominant features in the
behaviour of particular types of structure as they deform.

Mcivor et al.[4,5] and Miles[6] have considered the plastic collapse and subsequent defor­
mation of general frames and, in particular, thin-walled beam structures. Their approach has
been to incorporate experimentally determined constitutive equations for the localised zones of
deformation which occur in such structures into large displacement framework analyses based
on matrix methods. In contrast to this approach an experimental survey has been made of the
large deformation of tubes subjected to a particular form of local loading [7, 8]. The aim of this
was to gain an understanding of the local deformation modes in the zones referred to above.

The present authors have been concerned with the response of nests of tubes subjected to
lateral compression between rigid plates [9]. In Ref. [9] it was demonstrated that the behaviour
of an open system of tubes could be deduced simply from that of a single tube compressed
between rigid plates. This latter problem has been examined previously in the literature [10-13].
DeRuntz and Hodge[ll] proposed a theory based upon limit analysis which incorporated a
geometrical stiffening effect reflecting the increase in load required to continue the deformation
beyond initial collapse. The predicted rate of increase in the load however considerably
underestimated that which was observed experimentally, the discrepancy increasing with
deflection. It was c;oncluded that the effects of strain hardening, which had been neglected by
DeRuntz and Hodge, were significant. Redwood [12] pursued this point and confirmed that the
experimental results given by DeRuntz and Hodge were typical. He referred to experiments
performed by Burton and Craig [I 3] which also demonstrated a more rapid stiffening of the tube
than that predicted by the DeRuntz and Hodge theory. Redwood attempted to incorporate the
effects of strain hardening in a semi-empirical way but the results were not an appreciable
improvement.

As far as the authors are aware this particular problem has not received attention since the
publication of Redwood's note and it is therefore re-examined here. Since it is possible to
envisage a number of similar situations in which stationary plastic hinges occur in conjunction
with large deformations, it was thought useful to attempt to devise a method of incorporating
the effects of strain-hardening in a more complete way into such problems.
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It has been pointed out by McIvor et al. [5] that, in the application of structural plasticity to
the type of problem envisaged above, the central issue is the post collapse load behaviour and
not the determination of the collapse load itself which is principally the province of limit analysis.
Solutions of structural problems involving large plastic deformation are not numerous. Problems
involving beams and plates have been reviewed by Jones [14]. One of the main effects of "large"
displacements (of the order of a few thicknesses) is to generate axial (for beams) or in-plane (for
plates) forces which lead to considerable stiffening of the response to the applied loads. These
solutions, which involve only moderately large displacements, are based upon a rigid-perfectly
plastic or elastic-perfectlY plastic material constitutive relationship.

For structural problems in which deformation is envisaged to occur through the action at
plastic hinges leading to significant geometry changes the rate method first introduced by
Batterman[l5] would appear to provide the relevant theoretical starting point. Giirkok and
Hopkins [t6] have used this in the analysis of a pin-ended beam subjected to a uniformly
distributed load. This is an axial force/bending interaction problem in which the rate method
provides the conditions under which a central plastic hinge splits and is transformed into two
parts which travel apart along the beam as the load is increased. Gill[t7] has solved a similar
problem without recourse to the formalism of the rate method. Onat and ShultS] solved the
problem of a circular arch subjected to an outward point load which tends to straighten it into a
triangular shape. This involves truly large deflections and the main feature of their solution was
again the occurrence of travelling hinges in the mode of deformation of the arch. Gill [t9] has
produced a novel solution of the same problem and also of the more complex case in which the
circular arch is pulled through to a "V" shape using the concept of equivalent structures. Both
of these analyses, which probably come closest to the problem under consideration, neglect the
effect of strain hardening.

Onat[20] has pointed out that the rate method is inconclusive in problems involving plastic
hinges when strain hardening is included and that to proceed one needs to consider the plastic
regions which originate at the hinges and spread into the rigid portions. Onat[21] examined the
effect of strain hardening on the stability of a simple frame after the limit load had been reached
using a rigid-linearly strain hardening constitutive equation. The same approach is used here to
provide an improved model for the behaviour of what, in the rigid plastic approximation, are plastic
hinges at which large rotations occur. The results are compared qualitatively with the experiments
reported by DeRuntz and Hodge [1 1] and in more detail with those described by Redwood [12] and
also with a number performed by the authors. These latter were part of an extensive experimental
investigation of a number of interesting features of the mode of deformation of single tubes which
will be reported elsewhere.

MODES OF DEFORMATION AND RIGID-PERFECTLY PLASTIC SOLUTION

The problem considered is that of a circular tube of radius R and thickness t compressed
between rigid, flat plates as shown in Fig. l(a). It is assumed that the mode of deformation is
two-dimensional and so the tube length enters the problem as a simple scaling factor; thus a tube
of unit length is considered below. The effect of length dependent features of the mode of
deformation will be discussed later. DeRuntz and Hodge proceeded to analyse the load­
deflection relationship on the basis of a rigid-perfectly plastic theory assuming that the collapse
mode consisted of four plastic line hinges as shown in Fig. l(b). These hinges were assumed to
remain stationary relative to the rigid portions of the tube, separation occurring from the outset
between the tube and the plates in the centre of the contact zone. Burton and Craig proposed
the alternative mode shown in Fig. t(c) in which the tube is flattened in the contact zones and
conforms to the shape of the plates throughout the loading. The contact zones terminate in
hinges, V, which travel outwards as the deformation proceeds. The horizontal hinges H remain
stationary relative to the tube as in the DeRuntz and Hodge model. Whilst both modes are valid
from the point of view of limit analysis they clearly cannot both be correct vis a vis the
observed behaviour of compressed tubes. A preliminary discussion of the relative merits of the
two modes has been given in [9]. However, as far as the rigid-perfectly plastic solution is
concerned it is shown below that the two modes i,tpply identical load-detlection relationships

.. \

and so an argument in favour of one or the other is superfluous. (One slight difference is that a
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H

(a) (b) • Plastic hinge (e)

Fig. 1. (a) Undeformed tube geometry and loading arrangements; (b) DeRuntz and Hodge collapse mode; (c)
Burton and Craig collapse mode.

change in mode is required in the DeRuntz and Hodge model when the two hinges on the
vertical diameter meet whereas the Burton and Craig mode allows virtually complete collapse).

Figure 2 shows the system of forces and moments acting on one quadrant of the deforming
tube which arise from considerations of equilibrium and symmetry. In Fig. 2(a) the quadrant is
separated into a circular arc and a flat portion which is in a state of pure bending. In each case
moment equilibrium implies that

PR
-cos{3 =2Mo2

or P= 4Mo
R cos {3

(1)

where, neglecting any interaction with shear and normal forces, Mo = u ot
2/4, Uo being the

uniaxial yield stress.
Note that the moment arm of the external forces is R cos {3. Simple geometry gives

Thus

8 = R sin {3 (2)

(3)

Equation (3) clearly shows the necessity for the load to increase as the deflection increases this
being due to the reduction in the moment arm.

Figure 3 shows the load-deflection characteristic given by Redwood for a 1.66 in radius
annealed mild steel tube for which tlR = 0.108. The tube length was 4 in. The prediction of eqn
(3) is shown together with the result obtained by Redwood after making some allowance for
strain hardening. Redwood assumed rigid-linear strain hardening behaviour for the tube

PI2
PI2

PI2

R' R
1\

(0) (b)

Fig. 2. System of forces and moments on a quadrant of the tube; (a) Burton and Craig mode; (b) DeRuntz
and Hodge mode.
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Fig. 3. Load-deflection graph for a mild steel tube tlR = 0.108. R = 1.66 in. L = 4 in from (12)

material and deduced the following modification of eqn (3)

(4)

(5)

where Ep is the strain hardening modulus and a is a measure of the arc length of the region
near to H in which the curvature change occurs. The arc length, S, is given by S = at and a
value of a = 5 was used in obtaining the curve shown in Fig. 3. This value came from
measurements on the specimens and implies a "hinge" length of approximately 0.9 in. Basically
Redwood's method was equivalent to replacing eqn (I) by the following equation

PR2 cos f3 = (Mo+MH )

and allowing MH to increase with f3 in a manner determined by the hardening modulus Ep• It is
clear from Fig. 3 that whilst this modification provides an improvement on DeRuntz and
Hodge's theory it still falls short of the experimental data. This descrepancy was discussed at
some length by Redwood and subsequently by DeRuntz and Hodge [l2].

SECONDARY EFFECTS AND BASIS OF PROPOSED MODEL

In attempting to construct an improved model for the tube behaviour several secondary
effects were considered. These included strain-hardening, the cause of the change in mode of
deformation at 81R - 0.3 and the anticlastic curvature which is produced primarily in the
flattened region near to the ends of the tube. A full consideration of all of these effects is
beyond the scope of the present work, but details of an extensive series of experiments will be
presented in a companion paper. However a significant experimental observation was that, as a
tube was deformed the moment arm was noticeably less than that used in both eqns (I) and (5),
the difference increasing with deflection. Furthermore, if d(8) is the empirical moment arm
corresponding to the deflection 8, it was found that replacing (I) by

(6)

produced significantly better agreement with the data. This led to the hypothesis that one of the
main effects of strain hardening is in determining the geometry of the deforming tube and not
simply in producing an increased moment MH as assumed by Redwood.

In order to test this hypothesis the following theoretical model is proposed for a quadrant of
the deforming tube.

(I) The material is considered to be rigid-linearly strain hardening. Thus the relationship
between the change in curvature, K and the moment at a particular section of the tube is
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(7)

where 1= t3/12 for a tube of unit length and thickness t.
(2) It is assumed that the structural elements of a quadrant of the tube are as shown in Fig. 4(a).

The simple travelling hinge is retained at V as in Fig. 2(a). In principle this could be replaced
by a strain hardening region in the manner described below. However the influence of the
contact stress field on the behaviour of the hinge at V should also be considered in proposing
such a replacement and this would seem to be too complex at this stage. Furthermore the tube
profile appears to be reasonably circular as it passes through V, unlike the region around H in
which there is a continuously changing curvature. Thus the portion of the tube not in contact
with the plate is considered to be comprised of a rigid circular arc VB and a deformed circular
arc BH. B denotes the extent of the hinge region around H and the bending moment there is
Mo as shown.

The basis of the method employed below is to determine a structure comprised of a rigid and
a deformed portion, VB and BH respectively, the geometry of which can be determined for a
given load factor A = P/Powhere Po =4(Mo/R). Large geometry changes are anticipated at the
outset and consequently the analysis of the deformation from a circular arc to the arc BH must
be capable of incorporating the effects of large deformations. Whilst VB undergoes large
displacements from its position in the unloaded configuration, it is assumed to do so as a rigid body.

AN AL YSIS OF THE ARC BH

Removing the horizontal rigid body translation of H, the deformed and undeformed
configurations of BH are as shown in Fig. 4(b). Assuming that the centreline of the arc behaves
inextensibly and taking the moment-curvature relationship given in eqn (7), it can be shown
that the behaviour of BH is analogous to that of an elastica of flexural rigidity BpI. The problem
is esentially that of an encastre circular bar with a vertical end load, the governing equations for
which can be found in the text by Frisch-Fay [22]. For completeness the equations and their
solutions are given below although some of the details are omitted since they can be found in
[22]; the same notation as [22] is employed for ease of reference.

Defining the deformed shape of BH by the intrinsic co-ordinates s, the arc length, and 8, the
slope of the tangent, as shown in Fig. 4(b) and using eqn (7) the governing equation for a load
P/2 is as follows

(8)

Defining k2 = (P/2B~l) leads to

P/2

P/2

(0) (b)

Fig. 4. (a) System of forces on quadrant of proposed model for tube collapse; (b) Deformation of BH
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Hence

where C is a constant of integration.
If () = y at B then

Hence (10) becomes

s. R. REID and T. Y. REDDY

1 (dO)2- - = ecosO+C
2 ds

(9)

(10)

(11)

1 (dO)2 2 12 ds =k(cos(}-cosY)+2Ri'

At end H, MH = Mo+ (PbI2)

From (12) and (13), the parameter b satisfies the following quadratic equation

Z 2 2
(bIR) + (bIR) eR2 - k2Rz(1- cosy) = o.

In [22] the subsidiary variables a, <p and p are introduced where

(12)

(13)

(14)

and

Thus

1 1
cosa = cosy - 2eR2

1- cos(} = 2p zsinz<p = (1- cosa)sinz<p .

cosa = 1-2p z

(15)

(16)

The main geometrical parameter required for the tube analysis is c (shown in Fig. 4b). This
is given in [22] by

c = [2E(p,<p,) - F(p,<PI)]lk (17)

where <p = <PI corresponds to () = y and F and E are the incomplete elliptic integrals of the first
and second kind respectively. If 1/2 is the length of BH (half the "hinge" length) then it can be
shown that

(18)

The final results required from [22] come from eqns (15) and (16). Since <p = <PI corresponds to
() = y we have
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2 1
cosy = 1- 2p +2eR2

4J1 = COS-I (2P~R)'

219

(19)

(20)

SYSTEM OF EQUATIONS GOVERNING TUBE COMPRESSION

The method by which the equations above provide a relationship between P and S will now
be described. Basically one specifies a value of P and then calculates the geometrical
parameters sequentially. To do this the equations from the previous section are supplemented
by the following two equations which are derived from Fig. 4(a) by equilibrium and geometrical
considerations

P= 4Mo
Rcosy

S = Rsiny - c.

Using the load parameter A and taking Po =(4MoIR) =«(Tot 2IR) we have

k = my(A)

where

= ( 6(TO )112
m EptR .

(21)

(22)

(23)

A non-dimensional parameter which plays an important role in the solution is mR. The steps by
which A is related to SIR are as follows:-

A-+ y: from (21) 4Mo Po Icos y =-=-=-
PR P A

cos Y = I/A (I)

A, y-+p: from (19), (23), (I) 2 I ( I)2p = I - - 1- ;:;-:::Tii'2
A 2m R

or

p = _1_ (1- n/A )1/2
(II)

y2
where

1
n = 1- 2m 2R2

p -+4JI: from (20)
4J1 = COS-I (2pm~Y(A»)

(III)

p, 4J1-+ clR: from (17) clR = [2E(p, 4Jd - F(p, 4Jdl/mRy(A) (IV)

y,cIR-+SIR: from (22) SIR = sin y - clR (V)

Thus one can produce a dimensionless load-deflection plot (Le. Avs SIR) using eqn (I)-(V).
Furthermore the parameters b and I can be determined from (14) and (18) if required.

RESULTS AND COMPARISON WITH EXPERIMENTS

In order to derive results from the theory, values of (To and Ep are required. In his discussion
of the results obtained by Burton and Craig for a 3.32 in diameter annealed mild steel tube,
Redwood included the stress-strain graph reproduced in Fig. 5 from which he deduced values
of 18 ton/in2 (4 x 10"lbf/in2

) and 92 ton/in2 (20 x 10"lbf/in2
) for (To and Ep respectively. The

USS Vol. 14. No. 3-D
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value for Uo correlates well with the measured value of approximately 1.4 ton for Po. Although
Redwood claimed that the value of Ep should over-estimate the effect of strain hardening it is
clear that in fact it gives a reasonable mean strain hardening modulus for the annealed tubes.
The result of using the two values quoted for Uo and Ep in the theory is shown in Fig. 6.

A quantitative comparison with the experiments performed by DeRuntz and Hodge is not
possible. They tested as-received tubes and gave no other specification than that they were made
from mild steel. The values of Po given in their paper for 0.18 in and 0.12 in thick tubes imply a value
of approximately 6.5 x 104 lbf/in2

• This clearly indicates that the tubes had been heavily worked
during their manufacture. This value is above the U.T.S. ofthe mild steel used by Burton and Craig
and also that used by the authors. It can be shown that reasonable agreement between their
experiments and the theory occurs with a value of 13 x 104 lbf/in2 for Epo Such a value is not
unreasonable for the tangent modulus of mild steel strain hardened under uniaxial load. However
in view of the lack of information :tbout the material used by DeRuntz and Hodge no more than
qualitative agreement between the theory and their results can be claimed.

Compression tests were performed by the authors on an annealed 2 in diameter tube and a
partially annealed 3 in diameter tube both of which had a wall thickness of 0.064 in. and a length
of 6 in. The resulting experimental and theoretical load-deflection graphs are shown in Fig. 7.
The material stress-strain characteristic is shown in Fig. 8 from which a value of 24 x 104 lbf/in2

was deduced for Ep• The values of Uo taken for the 2 in and 3 in tubes were 3.9 x 104 lbf/in2 and
4.7 x 104 lbf/in2 respectively. These values are consistent with the values of Po for the two tubes
and measurements of the Vickers Hardness Number which were made.

~15
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Fig. 5. Stress-strain curve for mild steel from [12].
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Fig. 6. Comparison between theory and experiment for data given by Redwood.
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Fig. 7. Experimental and theoreticalload-deftection traces for 2in. and 3in. diameter mild steel tubes.

Table 1 shows the sequence of computed values of the parameters which led to the results
shown in Fig. 6. As well as the loads and corresponding deflections, the value of the change in
curvature at H (Fig. 4a), which is given by eb from eqn (13), is included together with the
length of the hinge calculated using eqn (18). The last column indicates that the "hinge" length
increases from zero to a maximum value of about 1.1 in and then reduces to approximately
0.8 in at a ~/R value of 0.8. This behaviour points to an important feature of the mode of
deformation but also implies an inaccuracy in the method both of which will be discussed in the
next section. It is interesting to note that the average value of the theoretical hinge length is
approximately 0.9 in which compares well with the value of 0.9' in indicated by Redwood. This is
given with the corresponding values for the 2 in and 3 in tubes in Table 2.

DISCUSSION

Explanation of the more rapid increase in tube stiffness at large deflections
The theory used is based upon a relatively crude representation for the material behaviour.

In particular the choice of a suitable value for the hardening modulus Ep is somewhat arbitrary
although the values chosen in the applications above represent reasonably well defined mean
values for the tangent modulus over a range of strains. No doubt more refined techniques could
be devised in which the strain range at H could be used to define a more accurate value of Ep

iteratively in conjunction with the stress-strain relationship. In spite of this the agreement with the
experiments quoted is encouraging.

Of greatest interest is the ability of the theory to model the tendency of the slope of the
load-deflection curve to increase more rapidly in the later stages of the deformation. An
explanation of the source of this can be found by examining the results for a typical case.
Consider the results given in Table 1. The variations in the curvature at H and in the length of

6

S
&5
~ Ep=24xl0' Ibf Isq. in

i 4 ~::':__qi= 39x10' Ibflsq In
x
~3
w
a:
tn2

a 5 10
STRAIN('Io)

15 20 25

Fig. 8. Stress-strain curve for annealed tensile specimens taken from same batch of mild-steel tube
referred to in Fig. 7.
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Table 1. Theoretical data for Redwood's mild
steel tube

Change in Length
curvature of

Load Deflection atH hinge
(tons) (in) (in-I) (in)

1.39 0.00 0.00 0.00
1.53 0.47 0.47 0.94
1.67 0.86 0.79 1.05
1.81 1.14 1.05 1.08
1.95 1.37 1.27 1.09
2.08 1.54 1.47 1.09
2.22 1.69 1.66 1.08
2.36 1.81 1.83 1.07
2.50' \.92 1.98 1.06
2.64 2.01 2.13 1.04
2.78 2.08 2.27 1.03
2.92 2.15 2.41 1.02
3.06 2.21 2.54 1.00
3.20 2.26 2.66 0.99
3.34 2.31 2.78 0.97
3.47 2.35 2.89 0.96
3.61 2.39 3.00 0.95
3.75 2.43 3.11 0.94
3.89 2.46 3.22 0.93
4.03 2.49 3.32 0.91
4.17 2.52 3.42 0.90
4.31 2.54 3.52 0.89
4.45 2.57 3.61 0.88
4.59 2.59 3.70 0.87
4.73 2.61 3.79 0.86
4.86 2.63 3.88 0.85
5.00 2.64 3.97 0.84
5.14 2.66 4.06 0.83

Table 2. Comparison of hinge lengths

Tube Length of hinge

Experiments Theory

Authors' 2 in diameter 0.49 in (aiR = 0.83) 0.50 in (mean)
mild steel

0.45 in (aiR = 0.81)

Authors' 3 in diameter 0.65 in (aiR = 0.67) 0.59 in (mean)

0.46 in (aiR = 0.8) 0.64 in (aiR = 0.66)

0.56 in (aiR = 0.8)

Redwood's 3.32 in
0.9 in (mean) 0.94 in (mean)diameter mild steel

the hinge are shown in Fig. 9. As the load increases from Po the zone over which plastic
deformation occurs expands rapidly, the change in curvature at H increasing almost linearly. In
this first phase therefore the effect of strain hardening is predominantly to disperse the
deformation over a significant arc of the cross-section of the tube in contrast to the production
of a localised hinge as assumed in limit analysis. The hinge reaches its maximum length at a
deflection ratio 8/R-"" 0.4 and subsequently reduces. As a consequence of this the rate of change
of curvature with deflection begins to increase. This causes a more rapid increase in the
moment at H which in turn contributes to the more rapid rise in the applied load. It is
interesting to note that the curvature change takes on an even greater rate of increase around
8/R "" 0.6. It has previously been reported [9] that noticeable changes in the character of the
load-deflection curve occur around the two values indicated above and these results would lead
one to suggest that these changes correspond to the characteristics shown in Fig. 9.
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The reduction in the length of HB, whilst an important feature of the model, does indicate a
certain degree of approximation in the method. As outlined above, the determination of the
deflection for a given load factor is a self-contained process, there being no explicit dependence
on the loading history. The tendency of the length of the plastic region BH to decrease shows that
this cannot be the case. This behaviour indicates that a small part of the tube experiences a
reduction in bending moment. Neglecting any interaction between bending and shear or normal
force components (implicit in our assumptions of inextensibility and eqn 7) this implies a degree
of unloading in certain parts of the tube. Since the external loads are increasing monotonically
it is expected that the significance of this unloading will be smallt. One consequence of this
feature of the solution is that VB will not be completely circular as assumed since part of it
adjacent to B will have a radius of curvature less than R due to its previous history of plastic
bending. The non-circular part of VB is that which has undergone least change of curvature in
BH and so its neglect should not be significant.

The changes in the length of the plastic zone revealed by the theory are physically
reasonable. The arc VH is in a state of contraflexure and, as the deformation proceeds, is
reducing in the length. It might therefore be expected (and indeed it can be clearly seen in many
tests) that the zone of most intense bending near to H becomes more concentrated.

Importance of mR = (6uoRIEpt)112
The response of a tube at large deflections is principally determined by the magnitude of the

parameter mR. The smaller the value of mR the bigger is the deviation from the DeRuntz and
Hodge theory which corresponds to mR -'00. This is shown clearly in the family of non­
dimensional load-deflection curves given in Fig. 10. The values of mR for the specific tests
shown in Figs. 6 and 7 have been included on those figures.

It is interesting to note that mR consists of a combination of material and geometric
variables. Thorton and Magee [24] have recently discussed the dependence of the energy
absorbing capacity of a material on the geometry of the testing mode. In particular they
compared the performance of tubes of different materials in uniaxial tension and compression
and concluded that, because of the differences in the modes of deformation, different material
parameters are significant in different modes. They found that in tension the ultimate tensile
strength, Unl!> and the uniform elongation (i.e. tensile strain to fracture), E., were significant
whilst the latter was unimportant in axial compression. The results above would seem to
indicate that for lateral compression uolEp plays a significant role. (This assumes that E. is
sufficiently large to preclude formation of cracks at the hinges H as discussed in [9]).

Influence of secondary effects
Finally it should be noted that some of the secondary effects mentioned in an earlier section

may have a noticeable effect on the load-deflection curves. It has been observed[9] that

Change In curvature at H -

[Hinge length c
lli

(],
c
'"1.0-
Q.>
(J1
c
:r:
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a

_ 2&(In)
0.5 1.0 \.5 2.0

Q2 Q4 Q6
- &/R

2.5

0.8

Fig. 9. Variation in the length of the hinge around H and curvature change at H with BIR.

tThe situation is somewhat similar to that discussed by Horne [231 in his treatment of the elastic-plastic theory of
compression members.
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Fig. 10. Influence of mR on large deflection response of tubes.

separation occurs within the contact zone to a degree which depends to a certain extent on the
material used. Whilst not being as large as that predicted by the DeRuntz and Hodge mode of
deformation, its occurence does imply an increase in the curvature change within the "contact"
region which, because of strain hardening, would qualitatively require an increase in the applied
load. Similarly anticlastic curvature in the end regions of the tube will lead one to expect an
increase in the applied load in excess of that calculated using the theory above. Either (or both)
of these effects could account for the tendency in Figs. 6 and 7 for the theory to fall below the
experimental curves for SIR approaching 0.8. These points will be discussed in the companion
paper referred to earlier. It is the authors' opinion however that the predominant features of the
large deformation behaviour of laterally compressed tubes can be accounted for using the
treatment of the stationary hinges described above.

CONCLUSION

It is accepted that the neglect of strain hardening is a reasonable approximation in situations
in which geometry changes affect the major load carrying mechanism, (provided that thereafter the
in-plane strains are not excessive.) However, when the mode of deformation consists principally of
bending and no in-plane forces are developed or where their effects are minimal, the neglect of
strain hardening can lead to substantial errors. These are due not only to the strengthening of the
material in the regions of plastic deformation but also to the influence that this strengthening
imposes on the geometry of the mode of deformation of the structure. In these latter cases a model
of the plastic regions is called for which is an improvement on the concept of a plastic hinge. This
has been attempted in the present paper and, with reference to the specific problem considered, it
would appear that the theory provides a better prediction of the load-deflection characteristic of
the structure as well as an insight into the manner in which strain-hardening influences the
response. Furthermore the predictions of the extent of the plastic zone correlate well with
experimental data.

From Fig. 10 it is clear that the parameter mR is important in determining the large
deformation response of a tube. Within the approximations of the theory, it would seem that
one couid maximise the energy absorbing capacity of tubes of a given material by choosing the
geometrical parameters in such a way as to minimise mR.
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